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Abstract
Generalizing a method used previously for three-body, four-body and very
recently for five-body systems, we derive a lower bound for the ground state
energy of an N-body Hamiltonian, with arbitrary N. Because the expression of
the lower bound obtained in this way depends on a number of parameters, we
obtain in fact a family of lower bounds, a lower bound for each set of values of
these parameters. The best of these is of course obtained by maximizing over
these parameters and is correspondingly named optimized lower bound. The
set of values of the parameters corresponding to the optimized lower bound
satisfy a number of relations, named universal dynamical constraints, which
result from the application of a dynamical principle and are independent of the
particular form of the potential. For N = 3, 4, 5, they can be worked out in the
most general case. For N = 6 up, they can be worked out only for particular
mass configurations. Furthermore, the optimized lower bound proves to be
saturated in the harmonic oscillator case.

PACS number: 03.65.−w

1. Introduction

The N-body problems are very complicated. Even the most simple of them, that is, the one-
body problem in a central potential or the two-body problem in the case of a translationally and
rotationally invariant potential, are exactly solvable only in a very limited number of cases. The
complexity of the problem grows rapidly with the number of particles N. Even the numerical
resolution, very simple in the case of one-body and two-body problems under the conditions
mentioned above, gets complicated quickly as the number of particles grows, requiring thereby
considerable calculational facilities. An alternative to numerical computations is to focus
oneself on exact results. Among these, exact lower bounds for N-body Hamiltonians occupy
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a particular place. Our goal here is to derive lower bounds for the ground state energies of N-
body systems in the case of non-relativistic kinematics and translationally invariant two-body
forces, i.e., for systems described by Hamiltonians of the form

H =
N∑

i=1

1

2mi

p2
i +

N∑
i<j=1

V (ij)(rij ), (1)

where mi, ri , pi stand, respectively, for the mass, the position and the linear momentum of the
ith particle. rij := ri − rj , i �= j = 1, 2, . . . , N . It will be noted that the potential V (ij) from
which the two-body force is derived may depend on the two involved particles. Our procedure
will generalize to arbitrary N optimized lower bounds obtained previously for three-body [1]
and four-body [2–5] cases.

Our work may have applications in various areas of physics and even in quantum chemistry.
We can by no means pretend to be exhaustive here. In the following, let us simply cite some
possible applications in the two domains of nuclear and particle physics. In the framework of
the so-called potential models of hadronic spectroscopy, baryons are considered as three-quark
bound states and the hypothetical multi-quark states, also called exotic hadrons, are treated as
bound states of more than three quarks and/or anti-quarks [6, 7]. To determine the ground state
energy of such hadrons, one often has recourse to variational calculations, such as systematic
expansions on correlated Gaussians [8]. Such computations provide us with an upper bound
for the ground state energy. If we want this upper bound to be accurate, i.e., close to the exact
ground state energy, one must include many terms in the variational calculations. This results
in involved computations. On the other hand, our procedure described hereafter provides one
with an accurate lower bound for the ground state energy. Combining the upper and lower
bounds would result in a framing of the ground state energy. Furthermore in the case of exotic
hadrons, one deals with the important issue of stability. In other words, one has to examine
whether multi-quark states are relatively stable or spontaneously decay via a super-allowed
mechanism into ordinary hadrons, by a simple rearrangement of quarks and/or anti-quarks
[6, 7, 9]. To this end, one has to compare the ground state energy of the multi-quark state
under study with those of its possible dissociation thresholds. One then concludes that the
multi-quark state is stable or unstable according to whether the ground state energy of the
multi-quark is lower than the energies of all its dissociation thresholds or not. Here the lower
bound obtained by our procedure may have a twofold interest: it gives a relatively accurate
approximation to the ground state energy of the multi-quark state and, in addition, if it proves
that such a lower bound is greater than one of the multi-quark dissociation thresholds, one
immediately concludes that the multi-quark state is unstable. Nearly the same situation occurs
for exotic molecules with bosonic constituents [10]. The same central issue of stability is
addressed. The only important difference with the multi-quark states case is the mechanism of
binding. To be more precise, exotic molecules are bound by electromagnetic forces whereas
multi-quark states are bound by strong forces. This results in the case of a systematic expansion
on correlated Gaussians in a slower convergence of the computations as compared with the
multi-quark case (it is a known general feature of the method of systematic expansion on
correlated Gaussians that it works better for smooth than for singular potentials [2], as it
is the case for the Coulombic potential, responsible for the binding of exotic molecules).
All we have said for multi-quark states can be repeated word by word for exotic molecules
with bosonic constituents. Another possible application of our procedure is to the so-called
borromean systems [11], i.e., bound systems with no bound subsystems, which are seen in
nuclear physics. For those systems it is the kinetic energy decomposition, which is (as we will
show below) the starting point of our procedure, that serves to obtain sufficient conditions for
the nonexistence of borromean systems.
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2. Optimized lower bound

Our starting point will be the following decomposition,

N∑
i=1

1

2mi

p2
i =

 N∑
j=1

bjpj

 (
N∑

i=1

pi

)
+

N∑
i<j=1

aijp
2
ij , (2)

of the kinetic part of the Hamiltonian involving the parameters bj , j = 1, . . . , N , and the
necessary positive parameters aij , i < j = 1, 2, . . . , N . pij is a linear combination of the
various momenta pk ,

pij =
N∑

k=1

xij,k

2
pk, (3)

with the coefficients xij,k of the linear combination chosen such that rij and pij are conjugate
variables of one another, that is, satisfying canonical commutation relations

[rij,k, pij,�] = ih̄δk,� k, � = 1, 2, 3, (4)

where rij,k and pij,� stand, respectively, for the kth component of rij and the �th component
of pij . Replacing the momenta pij by their expressions, (3), (2) can be rewritten as

N∑
i=1

1

2mi

p2
i =

 N∑
j=1

bjpj

 (
N∑

i=1

pi

)
+

N∑
i<j=1

aij

4

(
N∑

k=1

xij,kpk

)2

. (5)

It will be remarked that the parameters bj , aij and xij,k are constrained by relations obtained
by identifying both sides of (5). More precisely, the identification of the left-hand side of (5)
with its right-hand side provides N + N(N − 1)/2 constraints. If one remarks that the number
of bj is N and the number of aij is N(N − 1)/2, these constraints may be used to eliminate
bj and aij in favour of xij,k . From now on, bj and aij are considered as implicit functions of
xij,k . We may, without loss of generality, take xij,i equal to 1 by a redefinition of aij and of
xij,k for k �= i = 1, 2, . . . , N . Then imposing the canonical commutation relations (4) one
ends with xij,j = −1. The decomposition of the Hamiltonian (1) corresponding to (5) is

H =
 N∑

j=1

bjpj

 (
N∑

i=1

pi

)
+

N∑
i<j=1

aij

4

(
N∑

k=1

xij,kpk

)2

+ V(ij)(rij )

 . (6)

Let |�〉 be the normalized ground state of the system and E the corresponding energy. We
have

E = 〈�|H |�〉

= 〈�|
 N∑

j=1

bjpj

 (
N∑

i=1

pi

)
|�〉 +

N∑
i<j=1

〈�|
aij

4

(
N∑

k=1

xij,kpk

)2

+ V (ij)(rij )

 |�〉. (7)

Since the ground state |�〉 is invariant under translation, then(
N∑

i=1

pi

)
|�〉 = , (8)

and thus the contribution of the first term on the right-hand side of (7) vanishes. The following
results:

E =
N∑

i<j=1

〈�|
aij

4

(
N∑

k=1

xij,kpk

)2

+ V (ij)(rij )

 |�〉. (9)
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But, by virtue of the variational principle,

〈�|
aij

4

(
N∑

k=1

xij,kpk

)2

+ V (ij)(rij )

 |�〉 � E
(2)
ij [aij (xkl,m)], (10)

where E
(2)
ij [aij (xkl,m)] stands for the ground state energy of the two-particle Hamiltonian

H
(2)
ij [aij (xkl,m)] = aij

4

(
N∑

k=1

xij,kpk

)2

+ V (ij)(rij ). (11)

It follows that

E �
N∑

i<j=1

E
(2)
ij [aij (xkl,m)]. (12)

Thus one obtains a family of lower bounds for E, a lower bound

N∑
i<j=1

E
(2)
ij [aij (xkl,m)], (13)

for each set of values of the parameters xkl,m. The best of these bounds corresponds obviously
to those values of xkl,m which maximize

∑N
i<j=1 E

(2)
ij [aij (xkl,m)]. The following is called the

optimized lower bound:

Eolb := max
xkl,m

N∑
i<j=1

E
(2)
ij [aij (xkl,m)]. (14)

3. Universal dynamical constraints

Before pursuing, we find it convenient to introduce the following notation:

LN := N(N − 1)

2
, CN := N(N − 1)(N − 2)

2
, RN := N(N − 1)

2
− 1 = LN − 1.

(15)

When
∑N

i<j=1 E
(2)
ij [aij (xkl,m)] reaches its maximum with respect to xkl,m, all the derivatives

with respect to xkl,m must vanish, that is,

N∑
i<j=1

∂E
(2)
ij

∂aij

∂aij

∂xkl,m

= 0 m �= k, m �= l, k < l = 1, 2, . . . , N. (16)

Since ∂E
(2)
ij

/
∂aij are not all zero, the LN × CN matrix B̃ with matrix elements ∂aij /∂xkl,m,

where ij and kl,m correspond, respectively, to the line and column indices, must be of rank
RN at most. This means that every LN × LN matrix extracted from the matrix B̃, by selecting
LN of its columns, must be of determinant zero. Requiring the matrix B̃ to be of rank RN

at most will result in CN − RN relations between the values of the CN parameters when the
optimized lower bound is reached. These relations will be referred to hereafter as universal
dynamical constraints, universal because they have the nice property to be independent of
the particular form of the potential, and dynamical since they result from the application of a
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dynamical principle, i.e., the variational principle. Let us now look for the explicit expressions
of aij as functions of xkl,m. Identifying both sides of (5) gives

bk +
N∑

i<j=1

x2
ij,k

4
aij = 1

2mk

, (17)

for the terms in p2
k and

bk + b� +
N∑

i<j=1

xij,kxij,�

2
aij = 0, (18)

for the terms in pk · p�, k �= � = 1, 2, . . . , N . Combining equations (17) and (18), one obtains
a set of LN linear equations with LN unknowns aij , and CN parameters xij,k ,

N∑
i<j=1

C̃ij,k�ak� = 1

2mi

+
1

2mj

, (19)

with

C̃ij,k� =
(

xk�,i − xk�,j

2

)2

. (20)

Equation (19) can be written in the matrix form as

D̃A = α, (21)

where D̃ is an LN × LN matrix, with D̃11 = C̃12,12, D̃12 = C̃12,13, . . . , D̃21 = C̃13,12, . . . ,
D̃N(N−1)/2N(N−1)/2 = C̃N(N−1),N(N−1), that is, using (20),

D̃ := 1

4


(x12,1 − x12,2)

2 (x13,1 − x13,2)
2 · · · (xN−1N,1 − xN−1N,2)

2

(x12,1 − x12,3)
2 (x13,1 − x13,3)

2 · · · (xN−1N,1 − xN−1N,3)
2

...
...

. . .
...

(x12,N−1 − x12,N )2 (x13,N−1 − x13,N )2 · · · (xN−1N,N−1 − xN−1N,N)2

 , (22)

A and α in (21) are two column matrices with LN lines given by

A :=


a12

a13

...

aN−1N

 , α :=


α12

α13

...

αN−1N

 (23)

with

αij := 1

2mi

+
1

2mj

. (24)

The matrix equation (21) can be inverted, thus giving LNaij as functions of CNxk�,m,

A = D̃−1α. (25)

Needless to say that the analytical inversion of the matrix D̃ in the most general case, i.e.,
for the most general mass configuration, is far from being an easy task. Fortunately, we do
not need the explicit expressions of aij in terms of the parameters xk�,m to have access to the
universal dynamical constraints as we will show in the following. Indeed taking the derivative
of (21) with respect to xk�,m, (m �= k,m �= �), one obtains, taking into account that αij do not
depend on xk�,m, and after multiplying by D̃−1,

∂A
∂xk�,m

= −D̃−1 ∂D̃
∂xk�,m

A. (26)
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Equation (26) shows that the matrix B̃ is minus the product of the inverse of the LN × LN

matrix D̃ by an LN × CN matrix M̃′

B̃ = −D̃−1M̃′. (27)

The matrix M̃′ is constructed in the following way: consider the sole column of the matrix
D̃ which depends on a given xk�,m, k < � = 1, 2, . . . , N,m �= k,m �= �, m = 1, 2, . . . , N ,
take its derivative with respect to xk�,m and multiply the result by ak�. The column obtained in
this way is nothing but the column of the matrix M̃′ corresponding to the column index k�,m.
Equation (27) shows that the rank condition on B̃ is equivalent to the same rank condition on a
simpler matrix M̃′. We can even replace this rank condition on M̃′ by the same rank condition
on a simpler matrix. Indeed, we know from the properties of determinants [12] that when
a column of a matrix is multiplied by a factor, the corresponding determinant is multiplied
by the same factor. Therefore, the determinant of any LN × LN matrix extracted from the
matrix M̃′ shows in the form of a product of LN factors aij , not necessarily all different, by
the determinant of the same square matrix by putting formally all the factors aij equal to 1.
We may then conclude that the rank condition on the matrix B̃ is equivalent to the same rank
condition on a rectangular matrix M̃ obtained from the matrix M̃′ by formally putting all aij

equal to 1. At this point, we are in a position to give a three-step recipe in order to work out
the universal dynamical constraints:

First step: construction of the matrix M̃. Take the only column of the matrix D̃ which depends
on a given xk�,m and derive it with respect to xk�,m. The result is nothing but the column of
the matrix M̃ corresponding to the column index k�,m. Repeating the process for each k�,m,
k < � = 1, 2, . . . , N,m �= k,m �= �,m = 1, 2, . . . , N (for example, we may choose to vary
m first, then �, and finally k), one constructs the matrix M̃. It is worthwhile to emphasize that
each column of the matrix D̃ gives rise to N − 2 columns of the matrix M̃. Therefore, the
columns of the matrix M̃ come in blocks labelled by k�, each consisting of N − 2 columns
and involving the same number of parameters xk�,m, namely N − 2 parameters, with given k�

and varying m.

Second step: choice of the independent parameters. Since we know that the number of
universal dynamical constraints is CN − RN , one can take advantage of these relations to
eliminate the same number of parameters in favour of the remaining RN parameters, which
are considered as independent parameters. Many choices of such independent parameters
are allowed. A choice which we found particularly interesting consists in taking all the
parameters, except one of them, occurring in three blocks. We are then faced with two
possible situations: either the number of parameters selected in this way equals the number of
independent parameters, as in the N = 3 and N = 4 cases, and we have achieved our task, or
the number of chosen parameters is smaller than the number of independent parameters and
we must complete by further parameters taken out of the initially chosen three blocks. This
last situation occurs for N � 5.

Third step: determination of the universal dynamical constraints. Choose LN × LN matrices
out of the matrix M̃ by selecting LN of its columns. For each chosen matrix calculate the
corresponding determinant, write it in a factorized form, and equate it to zero. Then solve for
the dependent parameters in terms of the independent ones. You may obtain more than one
solution. Select the correct one by applying the following two criteria:

• The solution must correspond to the correct limits when the system exhibit symmetries—
for instance, all the parameters must be equal to zero in the equal mass case.
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• The parameters chosen as independent parameters in step 2 must be treated as independent
parameters in the sense that an expression containing only independent parameters cannot
be set to zero.

The minimal number of matrices to be considered in this step is the number of
universal dynamical constraints, i.e., CN − RN , but one may find itself in the necessity to
consider additional matrices because the initially selected matrices may not exhaust the whole
information implied by the rank condition. This point shows the great importance of the
choice of the square matrices in this step. A clever choice of these matrices leads to a fast
determination of the universal dynamical constraints. Let us say that it is merely a matter of
skill.

Two comments on the universal dynamical constraints are in order:

First, as N increases by one unit, a further qualitative difficulty appears in the computation
of the universal dynamical constraints. To state the things crudely: the three-body case
is rather trivial compared to the four-body case, this latter in turn is a child’s play when
compared to the five-body case, and the cases N � 6 seem to be intractable for the most
general mass configuration.
Second, the universal dynamical constraints are not of kinematical nature, so we can
ignore them, perform the maximization procedure, and verify a posteriori that they are
numerically verified at the maximum. Nonetheless, the universal dynamical constraints
are extremely important at least for practical reasons. Indeed with these relations at hand
the optimization procedure can be performed over independent parameters rather than
over the totality of the parameters, which makes it much more easier. This is particularly
clear if we have in mind that we deal with nonlinear optimization problems.

Let us now give the explicit expressions of the universal dynamical constraints for the
three-body case [1], the four-body case [2] and the five-body case [18]. We will illustrate our
three-step recipe described above in the three-body case. But since we find this an almost
trivial case, because of not exhibiting the typical difficulties inherent to the procedure, we will
also show how our procedure works in the four-body case in appendix A.

3.1. Three-body case

In this case, we have only one universal dynamical constraint, which may be expressed [1] as

e1 = d2 − c3

1 − c3d2
, (28)

where we have made the following change of notation:

c3 := x12,3, d2 := x13,2, e1 := x23,1. (29)

Let us apply our three-step procedure described above to recover the result (28).

First step. Using (22) for N = 3 one obtains for the 3 × 3 matrix D̃ the following expression:

D̃ = 1

4

 4 (d2 − 1)2 (e1 − 1)2

(c3 − 1)2 4 (e1 + 1)2

(c3 + 1)2 (d2 + 1)2 4

 . (30)

Each column of D̃ gives rise to one column of the matrix M̃, so M̃ is also a 3 × 3 matrix

M̃ = 1

2

 0 d2 − 1 e1 − 1
c3 − 1 0 e1 + 1
c3 + 1 d2 + 1 0

 . (31)
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Second step. Let us take here c3 and d2 as independent parameters.

Third step. Our rank condition translates here into a single relation

det M̃ = 0, (32)

which gives

c3d2e1 − c3 + d2 − e1 = 0. (33)

Solving the last equation for e1, one gets (28).

3.2. Four-body case

With the following change of notation,

c3 := x12,3, c4 := x12,4, d2 := x13,2, d4 := x13,4, e2 := x14,2, e3 := x14,3,
(34)

f1 := x23,1, f4 := x23,4, g1 := x24,1, g3 := x24,3, h1 := x34,1, h2 := x34,2,

the seven universal dynamical constraints can be expressed [2] as

e3 = c3 − c4 − d2 + d4 + e2 + c4d2 − c3d4 − c3e2 − d4e2 + c3d4e2

1 − c4 − d2 + c4d2
,

f1 = d2 − c3

1 − c3d2
,

f4 = d4 − c4 + c4d2 − c3d4

1 − c3d2
,

g1 = e2 − c4

1 − c4e2
, (35)

g3 = d4 + e2 − c4 − d2 + c3d2 + c4d2 − c3d4 − d4e2 − c3d2e2 + c3d4e2

1 − d2 − c4e2 + c4d2e2
,

h1 = c3 − c4 − d2 + e2 + c4d2 − c3e2

1 − c4 − d2 + d4 + c4d2 − c3d4 − d4e2 + c3d4e2
,

h2 = e2 − d2 − c4e2 + c3d2 + c4d2e2 − c3d2e2

1 − c4 − d2 + d4 + c4d2 − c3d4 − d4e2 + c3d4e2
.

The reader interested in application of our three-step procedure to the four-body case may find
full details in appendix A.

3.3. Five-body case

If we make the following change of notation in the five-body case,

c3 = x12,3, c4 = x12,4, c5 = x12,5, d2 = x13,2, d4 = x13,4, d5 = x13,5,

e2 = x14,2, e3 = x14,3, e5 = x14,5, f2 = x15,2, f3 = x15,3, f4 = x15,4,

g1 = x23,1, g4 = x23,4, g5 = x23,5, h1 = x24,1, h3 = x24,3, h5 = x24,5,

j1 = x25,1, j3 = x25,3, j4 = x25,4, k1 = x34,1, k2 = x34,2, k5 = x34,5,

l1 = x35,1, l2 = x35,2, l4 = x35,4, n1 = x45,1, n2 = x45,2, n3 = x45,3,

(36)

the 21 universal dynamical constraints [18] then read

e3 = c3d4e2 − c3d4 − c3e2 + c3 − d4e2 + d4 + c4d2 − d2 + e2 − c4

(1 − c4)(1 − d2)
,

f2 = c5 + j1

1 + j1c5
,
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f3 = j1c5 − c5d2j1 − c3d5 + j1c3d5 + c3 − d5j1 − c3j1 − d2 + d5 + j1

(1 − d2) (1 + j1c5)
,

f4 = j1c4e5 − c5e2j1 + c4 − e5c4 − c4j1 − e5j1 + j1c5 − e2 + e5 + j1

(1 − e2) (1 + j1c5)
,

g1 = c3 − d2

c3d2 − 1
,

g4 = c4d2 − c3d4 − c4 + d4

1 − c3d2
,

g5 = d2c5 − c3d5 − c5 + d5

1 − c3d2
,

h1 = e2 − c4

1 − c4e2
,

h3 = c4d2 − c4 + c3d2 + e2 + d4 − c3e2d2 − c3d4 + c3d4e2 − d4e2 − d2

(1 − d2) (1 − c4e2)
,

h5 = c5e2 − c4e5 − c5 + e5

1 − c4e2
,

j3 = c3d5j1 − c3d2j1 − c3d5 + c3d2 + j1 + c5j1 − c5d2j1 − d5j1 + d5 − d2

1 + c5 − d2 − d2c5
,

j4 = j1 + j1c5 − e5j1 + c4e5j1 − c4e2j1 − c5e2j1 − c4e5 + e5 − e2 + c4e2

1 + c5 − e2 − c5e2
,

k1 = c3 − c4 − d2 + e2 − c3e2 + c4d2

1 − c4 − d2 + d4 − c3d4 + c4d2 − d4e2 + c3d4e2
,

k2 = e2 − d2 + c3d2 − c4e2 − c3d2e2 + c4d2e2

1 − c4 − d2 + d4 − c3d4 + c4d2 − d4e2 + c3d4e2
,

k5 = e5 − d5 + c3d5 − c4e5 − d2e5 + d5e2 − c3d5e2 + c4d2e5

1 − c4 − d2 + d4 − c3d4 + c4d2 − d4e2 + c3d4e2
,

l1 = c3 − d2 + j1 − c3j1 + c5j1 − c5d2j1

1 − d2 + d5 − c3d5 + c5j1 − d5j1 + c3d5j1 − c5d2j1
,

l2 = c5 − d2 + j1 + c3d2 − c5d2 − c3d2j1

1 − d2 + d5 − c3d5 + c5j1 − d5j1 + c3d5j1 − c5d2j1
,

l4 = {(d4(c3 − 1)(e2 − 1)(j1 − 1) + (1 − d2)((c4 − 1)(e5 − 1)(j1 − 1)

− c5(e2 − 1)(j1 − 1) − (1 + c5)(e2 − 1)))/((1 − e2)(j1(c5 + 1)(1 − d2)

+ d5(1 − c3)(1 − j1) + (1 − d2)(1 − j1)))},
n1 = c4 − e2 + j1 − c4j1 + c5j1 − c5e2j1

1 − e2 + e5 − c4e5 + c5j1 − e5j1 + c4e5j1 − c5e2j1
,

n2 = c5 − e2 + j1 + c4e2 − c5e2 − c4e2j1

1 − e2 + e5 − c4e5 + c5j1 − e5j1 + c4e5j1 − c5e2j1
,

n3 = {((e2 − 1)((c3 − 1)(d4 − d5)(j1 − 1) + j1(c5 − 1)(d2 − 1)

+ (d2 − 1)(1 + j1)) + (c4 − 1)(d2 − 1)(j1 − 1))/((1 − d2)

× (1 − e2)(1 + c5j1) + e5(1 − c4)(1 − d2)(1 − j1))}. (37)

3.4. Particular configurations for the six-body case

As we have already noted, the calculations to obtain the universal dynamical constraints in the
most general case become intractable from the six-body up. For N � 6 the universal dynamical
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constraints can be computed only for particular mass configurations. For the simplest such
case, i.e., the six-body case, we can treat the configurations where up to three different masses
are involved, i.e., the configurations (m1,m2, 4m3) , (m1, 2m2, 3m3), (2m1, 2m2, 2m3), if we
restrict ourselves to two-body interactions depending only on the constituent masses. The full
details of the derivation of the corresponding universal dynamical constraints are included in
appendix B, together with a discussion about how our general method can be adapted to work
out the universal dynamical constraints when symmetries are present, i.e., for particular mass
configurations. In the following, we will simply give the relations implied by the symmetries
of the problem, together with the computed universal dynamical constraints.

3.4.1. (m1,m2, 4m3). Using symmetry arguments, it is easy to convince oneself that there
are only three independent bi ,

b1, b2, b3 = b4 = b5 = b6, (38)

four independent aij ,

a12, a13 = a14 = a15 = a16, a23 = a24 = a25 = a26, a34 = a35 = a36 = a45 = a46 = a56,

(39)

five independent parameters xij,k ,

x12,3 = x12,4 = x12,5 = x12,6 = c, x13,2 = x14,2 = x15,2 = x16,2 = d

x13,4 = x13,5 = x13,6 = x14,3 = x14,5 = x14,6 = x15,3 = x15,4

= x15,6 = x16,3 = x16,4 = x16,5 = e

x23,1 = x24,1 = x25,1 = x26,1 = f

x23,4 = x23,5 = x23,6 = x24,3 = x24,5 = x24,6 = x25,3 = x25,4

= x25,6 = x26,3 = x26,4 = x26,5 = g,

(40)

and all the other parameters xij,k are equal to zero. In this case, we have two universal
dynamical constraints which we can use to express f and g in terms of c, d and e:

f = c − d

cd − 1
, g = c − e − cd + ce

cd − 1
. (41)

3.4.2. (m1, 2m2, 3m3). Here, again by symmetry arguments, we have three independent bi ,

b1, b2 = b3, b4 = b5 = b6, (42)

five independent aij ,

a12 = a13, a14 = a15 = a16, a23, a24 = a25 = a26 = a34 = a35 = a36, a45 = a46 = a56, (43)

seven independent parameters xij,k

x12,3 = x13,2 = c,

x12,4 = x12,5 = x12,6 = x13,4 = x13,5 = x13,6 = d,

x14,2 = x14,3 = x15,2 = x15,3 = x16,2 = x16,3 = e,

x14,5 = x14,6 = x15,4 = x15,6 = x16,4 = x16,5 = f,

x24,1 = x25,1 = x26,1 = x34,1 = x35,1 = x36,1 = g,

x24,3 = x34,2 = x25,3 = x35,2 = x26,3 = x36,2 = h,

x24,5 = x24,6 = x25,4 = x25,6 = x26,4 = x26,5 = x34,5 = x34,6

= x35,4 = x35,6 = x36,4 = x36,5 = i,

(44)
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and all the other xij,k are equal to zero. Here we have three universal dynamical constraints
which allow us to express g, h and i in terms of c, d, e and f :

g = d − e

de − 1
, h = c + de − e − ce

de − 1
, i = d + df − f − de

de − 1
. (45)

3.4.3. (2m1, 2m2, 2m3). Using once again symmetry arguments, it is easy to conclude that
there are three independent bi ,

b1 = b2, b3 = b4, b5 = b6, (46)

six independent aij ,

a12, a13 = a14 = a23 = a24, a15 = a16 = a25 = a26, a34, a35 = a36 = a45 = a46, a56, (47)

nine independent parameters xij,k ,

x13,2 = x14,2 = x23,1 = x24,1 = c,

x13,4 = x14,3 = x23,4 = x24,3 = d,

x13,5 = x13,6 = x14,5 = x14,6 = x23,5 = x23,6 = x24,5 = x24,6 = e,

x15,2 = x16,2 = x25,1 = x26,1 = f,

x15,3 = x15,4 = x16,3 = x16,4 = x25,3 = x25,4 = x26,3 = x26,4 = g, (48)

x15,6 = x16,5 = x25,6 = x26,5 = h,

x35,1 = x35,2 = x36,1 = x36,2 = x45,1 = x45,2 = x46,1 = x46,2 = i,

x35,4 = x36,4 = x45,3 = x46,3 = j,

x35,6 = x36,5 = x45,6 = x46,5 = k,

and all the other xij,k are equal to zero. In this latter case, we have four universal dynamical
constraints which we can use to express f, g, j and k in terms of c, d, e, h and i:

f = c + i + ei − ci

1 + ei
, g = e + i

1 + ei
,

(49)
j = e + di + i − d

1 + e
, k = h − e + ei + ehi

1 + e
.

4. Special configurations

Let us now consider in turn the three special configurations (N × m), i.e., an N-body system
with the N particles having the same mass m, ((N − 1) × m,M), i.e., an N-body system
with N − 1 particles with the same mass m and a particle with mass M,m �= M , and
(n×m, n′ ×M), i.e., an N-body system with n particles with the same mass m and n′ particles
with the same mass M, with m �= M , n + n′ = N , and both n and n′ greater than 1. We
will work in the hypothesis where the two-body potential depends only on the masses of the
constituent particles. Here, the symmetry properties are sufficient to entirely determine the
universal dynamical constraints for these three particular configurations. In addition to this
fact, we have been able to prove [17] analytically the saturation of the optimized lower bound
in the harmonic oscillator case for these same particular configurations. A separate detailed
paper [17] is devoted to the analytical proof of saturability, including in particular the explicit
computations of both the optimized lower bound and the ground state energy, in the harmonic
oscillator case for the three special configurations mentioned above. So we will be very
brief here.
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4.1. (N × m) configurations

In this case

m1 = m2 = · · · = mN = m, (50)

and the system is invariant under any permutations of the N particles. This results in a single
a and also in a single b,

aij = a, i < j = 1, . . . , N, (51)

bi = b, i = 1, . . . , N, (52)

and all the parameters xij,k must be equal to zero

xij,k = 0, i < j = 1, . . . , N, k = 1, . . . , N, k �= i, k �= j. (53)

Thus we have no parameter to adjust, one distinct value a for aij and one distinct value b for
bi . The N + N (N − 1) /2 relations obtained by identifying both sides of (5) reduce here to
two relations, i.e.,

(N − 1)

4
a + b = 1

2m
, −1

2
a + 2b = 0. (54)

The linear system of equations (54) admits

a = 2

Nm
, b = 1

2Nm
(55)

as a solution. Let us consider the case of a power law potential, i.e., a two-body potential of
the form

v(rij ) = λrν
ij , (56)

with λ and ν of the same sign. Then the optimized lower bound Eolb (14) simplifies in this
particular case to

Eolb = N(N − 1)

2

(
2

Nm

) ν
2+ν

|λ| 2
2+ν E(2)(1, sign(ν), ν), (57)

where E(2)(α, λ, ν) denotes the ground state energy of the two-body Hamiltonian

H(2) = αp2 + λrν, (58)

and sign(ν) denotes the sign of ν. To obtain (57), we make use of the scaling laws for power
law potentials [13–16] which state, among other things, that the energy levels of a two-body
Hamiltonian of the form (58) scale as

E(2)(α, λ, ν) = α
ν

2+ν |λ| 2
2+ν E(2)(1, sign(ν), ν). (59)

In the harmonic oscillator case, i.e. for ν = 2,

E(2)(1, 1, 2) = 3, (60)

and (57) simplifies to

Eolb = 3N (N − 1)

√
λ

2Nm
. (61)

On the other hand, one can show [17] that the ground state energy of the N-body harmonic
oscillator is also given by (61). This means that the optimized lower bound is saturated, i.e.,
equal to the exact result, in the harmonic case for the particular mass configuration (N × m).
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4.2. ((N − 1) × m,M) configurations

One can always, without loss of generality, number the N − 1 particles with the same mass m
from 1 to N − 1 and the single particle with mass M by N, that is,

m1 = m2 = · · · = mN−1 = m, mN = M. (62)

Under the conditions specified above, the system is invariant under any permutations of the
N − 1 particles with the same mass m. This results in the following relations,

aij = amm i < j = 1, 2, . . . , N − 1, aiN = amM i < N, (63)

b1 = b2 = · · · = bN−1 = b, (64)

and

xij,k = 0 i < j < N, k �= i, k �= j,
(65)

xiN,k = � i < N, k �= i, k �= N.

We have thus only one variational parameter � to adjust and two distinct values amm and amM

for aij .
The N + N (N − 1) /2 relations obtained by identifying both sides of (5) reduce here to

four relations, namely,

b +
N − 2

4
amm +

1

4
amM +

N − 2

4
�2amM = 1

2m
,

bN +
N − 1

4
amM = 1

2M
,

(66)
2b − 1

2
amm + �amM +

N − 3

2
�2amM = 0,

b + bN − 1

2
amM − N − 2

2
�amM = 0.

Equations (66) may be considered as a system of linear equations with four unknowns
amm, amM, b, bN and one parameter �. The resolution of this system is trivial and gives
for amm and amM the following expressions in terms of the parameter �:

amm(�) = 2
(� + 1)(�N − 3� + 1 + N)M − (� − 1)2m

(�N + N − 2�)2mM
,

(67)
amM(�) = 2

(N − 1)m + M

(�N + N − 2�)2mM
.

Let us consider as an example the case of a two-body interaction described by a power law
potential

vmm(rij ) = λmmr
νmm

ij , i < j = 1, 2, . . . , N − 1,
(68)

vmM(riN) = λmMr
νmM

iN , i = 1, 2, . . . , N − 1,

where the real λmm and λmM have the same signs as νmm and νmM respectively. The optimized
lower bound Eolb reads in this case

Eolb = max
�

E(�), (69)

where

E(�) := (N − 1)(N − 2)

2
|λmm| 2

2+νmm (amm (�))
νmm

νmm+2 E(2) (1, sign(νmm), νmm)

+ (N − 1) |λmM | 2
2+νmM (amM (�))

νmM
νmM +2 E(2)(1, sign(νmM), νmM). (70)
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To obtain (70), we have made use of the scaling laws (59) for power law potentials.
In the harmonic oscillator case, i.e.,

Vij (rij ) = Vmm(rij ) = λmmr2
ij i < j < N,

ViN(riN ) = VmM(riN ) = λmMr2
iN i < N,

(71)

it is more convenient to work with a new parameter h related to the parameter � by

h := (N − 2) (1 − �)

(2 − N) (1 − �) + 2(N − 1)
. (72)

In terms of the new parameter h (72), amm and amM read

amm(h) = 2

(N − 1)m
− 2((N − 1)m + M)

(N − 2)2(N − 1)mM
h2, (73)

amM(h) = ((N − 1)m + M)

2mM(N − 1)2
(1 + h)2, (74)

and the optimized lower bound Eolb (69) takes the form

Eolb = max
h

E(h), (75)

where, taking into account of the result (60),

E(h) = 3(N − 1)

(
(N − 2)

2

√
λmm

√
2

(N − 1)m
− 2 ((N − 1)m + M)

(N − 2)2(N − 1)mM
h2

+
√

λmM

√
(N − 1)m + M

2mM(N − 1)2

√
(1 + h)2

)
. (76)

Here the maximization implied by (75) can be worked out analytically, and one can show
[17] that the value h0 of h corresponding to the optimized lower bound, which is obtained by
equating the derivative of E(h) (76) with respect to h to zero, is given by

h0 = (N − 1)

√
M

(N − 1)m + M

√
λmM

(N − 1)λmm + λmM

. (77)

Substituting h0 (77) in E(h) (76) one gets for the optimized lower bound Eolb (75) the following
expression,

Eolb = E (h0) = 3√
2

{
(N − 2)

√
(N − 1)λmm + λmM

m
+

√
λmM

m

√
(N − 1)m + M

M

}
, (78)

which is identical to the N-body harmonic oscillator ground state energy [17]. Thus the
optimized lower bound Eolb (78) is saturated for harmonic forces. The interested reader may
consult [17] for details.

4.3. (n × m, n′ × M) configurations

Here both n and n′ are greater than 1, which means that the system is at least a four-body
system. We can always number the n particles with the same mass m as 1, 2, . . . , n and the
remaining n′ particles with the same mass M as n + 1, n + 2, . . . , N . Of course n + n′ = N :

m1 = m2 = · · · = mn = m, mn+1 = mn+2 = · · · = mN = M. (79)
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Since the system is invariant under any permutations of particles with the same mass,

aij = amm, i < j � n,

aij = amM, i = 1, . . . , n, j = n + 1, . . . , N, (80)

aij = aMM, n < i < j � N,

b1 = b2 = · · · = bn = bm, bn+1 = bn+2 = · · · = bN = bM, (81)

and

xij,q = 0, i < j � n or n < i < j � N,

xij,q = �, i = 1, . . . , n, j = n + 1, . . . , N, 1 � q � n, q �= i, (82)

xij,q = p, i = 1, . . . , n, j = n + 1, . . . , N, n < q � N, q �= j.

Thus, here we have two different values, bm, bM, for bi , three different values, amm, amM, aMM ,
for aij , and two parameters, � and p, to adjust. The N + N(N − 1)/2 relations obtained by
identifying both sides of (5) reduce in this case to the following five relations:

bm +
1

4
(n − 1)amm +

n′

4
(�2(n − 1) + 1)amM = 1

2m
,

bM +
n

4
(p2(n′ − 1) + 1)amM +

1

4
(n′ − 1)aMM = 1

2M
,

2bm − 1

2
amm +

(
� +

�2

2
(n − 2)

)
n′amM = 0, (83)

2bM − 1

2
aMM +

(
p +

p2

2
(n′ − 2)

)
namM = 0,

bm + bM +
1

2
((n′ − 1)p − 1 − �(n − 1) + p�(n − 1)(n′ − 1))amM = 0.

Equations (83) can be considered as a system of five linear equations with five unknowns,
amm, amM, aMM, bm, bM . Solving this system, one gets for amm, amM and aMM the following
expressions in terms of � and p:

amm(�, p) = 2
(n − npn′ + pn + 2n′ − 2�n′ + n�n′)(1 − pn′ + p + �n′)M − (� − 1)2n′m

(n′ + n − �n′ + n�n′ − npn′ + pn)2mM
,

(84)

amM(�, p) = 2
n′M + nm

(n′ + n − �n′ + n�n′ − npn′ + pn)2mM
, (85)

aMM(�, p) = 2
(1 − � + n� − pn)(n�n′ − �n′ + 2pn − npn′ + 2n + n′)m − n(p + 1)2M

(n′ + n − �n′ + n�n′ − npn′ + pn)2mM
.

(86)

Let us consider again the case of a two-body interaction described by a power law potential,
that is,

vmm(rij ) = λmmr
νmm

ij , i < j = 1, 2, . . . , n,

vmM(rij ) = λmMr
νmM

ij , i = 1, 2, . . . , n, j = n + 1, n + 2, . . . , N,

vMM(rij ) = λMMr
νMM

ij , i < j = n + 1, n + 2, . . . , N,

(87)
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where λmm, λmM and λMM have the same signs as νmm, νmM and νMM respectively. Then the
optimized lower bound Eolb reads

Eolb = max
�,p

E(�, p), (88)

where

E(�, p) := 1
2n (n − 1) |λmm| 2

2+νmm (amm (�, p))
νmm

νmm+2 E(2) (1, sign(νmm), νmm)

+ nn′ |λmM | 2
2+νmM (amM (�, p))

νmM
νmM +2 E(2) (1, sign(νmM), νmM)

+ 1
2n′(n′ − 1)|λMM | 2

2+νMM (aMM(�, p))
νMM

νMM +2 E(2)(1, sign(νMM), νMM), (89)

and we again make use of the scaling laws (59) for power law potentials. In the harmonic
oscillator case, i.e., for

Vij (rij ) = Vmm(rij ) = λmmr2
ij i < j = 1, 2, . . . , n,

Vij (rij ) = VMM(rij ) = λMMr2
ij i < j = n + 1, n + 2, . . . , N,

Vij (rij ) = VmM(riN ) = λmMr2
ij i = 1, 2, . . . , n, j = n + 1, n + 2, . . . , N,

(90)

it is more convenient to work with new parameters h and c defined in terms of the original
ones � and p by the following relations:

h = (n − 1)(N − n) (1 − �)

(N − n)(1 − �) + n(N − n)(� − p) + n(1 + p)
, (91)

c = n(N − n − 1)(1 + p)

(N − n)(1 − �) + n(N − n)(� − p) + n(1 + p)
. (92)

In terms of the new parameters h (91) and c (92), amm, amM and aMM can be re-expressed as

amm (h, c) = 2

nm
− 2 (nm + (N − n)M)

n(N − n)(n − 1)2mM
h2, (93)

amM(h, c) = nm + (N − n)M

2n2(N − n)2mM
(1 + h + c)2, (94)

aMM(h, c) = 2

(N − n)M
− 2(nm + (N − n)M)

n(N − n)(N − n − 1)2mM
c2. (95)

It is easy to see that, when expressed in terms of h and c, E (�, p) (89) takes the following
form,

E(h, c) = 3

2

(
n(n − 1)

√
λmm

√
2

nm

√
1 − nm + (N − n)M

(N − n)(n − 1)2M
h2

+
√

λmM

√
2 (nm + (N − n)M)

mM

√
(1 + h + c)2

+ (N − n)(N − n − 1)
√

λMM

√
2

(N − n)M

√
1 − nm + (N − n)M

n(N − n − 1)2m
c2

)
, (96)

where we have made use of the result (60). The optimized lower bound Eolb (88) then reads

Eolb = max
h,c

E (h, c) . (97)

Here again the maximization procedure implied by (97) can be worked out analytically [17]
to the end. One can show [17] that the values h0, of h, and c0, of c, corresponding to the
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optimized lower bound, obtained by equating to zero the partial derivatives of E (h, c) (96)
with respect to h and c, are given by

h0 = (N − n)(n − 1)

√
M

nm + (N − n)M

√
λmM

nλmm + (N − n)λmM

(98)

c0 = n (N − n − 1)

√
m

nm + (N − n)M

√
λmM

(N − n)λMM + nλmM

. (99)

The optimized lower bound Eolb (97) is then given by

Eolb = E(h0, c0). (100)

Replacing h0 and c0 by their respective expressions (98) and (99), one finally gets for the
optimized lower bound the following expression,

Eolb = E(h0, c0) = 3√
2

(
(n − 1)

√
nλmm + (N − n)λmM

m

+
√

λmM

√
nm + (N − n)M

mM
+ (N − n − 1)

√
nλmM + (N − n)λMM

M

)
,

(101)

which is nothing but the ground state energy of the N-body harmonic oscillator obtained in [17]
for the mass configuration (n × m, (N − n) × M). This means that the optimized lower bound
is saturated, i.e., the optimized lower bound is equal to the ground state energy, for the N-body
harmonic oscillator in the case of mass configurations of the type (n × m, (N − n) × M).
Still the interested reader is referred to [17] for more details.

5. Conclusion

We have presented in this paper a general methodology for obtaining lower bounds for the
ground state energy of an N-body Hamiltonian obeying non-relativistic kinematics and with a
potential energy consisting of a sum of two-body contributions. Under these two conditions,
one is able to derive such lower bounds for arbitrary N.

The starting point is a particular decomposition of the kinetic energy term (5) involving
N +N(N −1)/2+N(N −1)(N −2)/2 parameters constrained by N +N(N −1)/2 conditions,
which can be used to express N + N(N − 1)/2 parameters in terms of the remaining
N(N − 1)(N − 2)/2 = CN ones. This means that we are faced with a decomposition
involving CN arbitrary parameters. Then making use of the well-known invariance of the
ground state under translations and of the variational principle, one ends with a lower bound
which has the original property to depend on CN arbitrary parameters. For each set of
values of these CN parameters, one obtains a lower bound for the Hamiltonian ground state
energy. The best of these lower bounds, one which is nearest to the ground state energy, named
optimized lower bound, is obviously the maximum of these lower bounds. We are thus involved
with a maximization problem over CN variables. We have shown that the values of the CN

parameters corresponding to the optimized lower bound satisfy CN −RN relations, which have
the nice property to be independent of the particular form of the potential. We named these
relations universal dynamical constraints. The calculations leading to the universal dynamical
constraints are tractable in the general case up to N = 5, that is, for N = 3, N = 4, N = 5,
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where we obtain respectively 1, 7, 21 constraints. For N > 5, i.e. for N = 6, 7, . . . , the
calculations are intractable in the most general case, but can be worked out when the system
exhibits a sufficient degree of symmetry. In these cases symmetry arguments allow one to
determine a number of these constraints and the remaining relations are then worked out.
As a general rule, the number of universal dynamical constraints obtained, other than those
determined by symmetry considerations, is the number of independent parameters minus the
number of independent aij plus 1. There are cases where the symmetry conditions alone allow
one to determine completely the constraints. These are the three configurations (N × m),
((N − 1) × m,M) and (n × m, n′ × M), with both n and n′ greater than 1. The universal
dynamical constraints are very useful since they may be implemented from the beginning
before working out the optimization procedure, simplifying it considerably. This remark takes
its whole significance if we have in mind that we deal with a nonlinear optimization problem.

Our preliminary investigations show, on the one hand, that the optimized lower bound is
always better than other lower bounds derived earlier [19–27]. (We will discuss this point in
detail in a forthcoming paper [28].) On the other hand, the optimized lower bound proves to be
identical to the ground state energy, i.e., the optimized lower bound is saturated, in the case of
the N-body harmonic oscillator for all the mass configurations we have considered and we are
convinced that this is a general property. But, although the property of saturability has never
been taken by default, this is only a numerical evidence for saturability and does not constitute,
strictly speaking, a mathematical proof of saturability. Moreover, to our knowledge, there is no
analytical proof of saturability of the optimized lower bound in the harmonic case. Recently
we succeeded to fill partially this gap. Indeed, we have given an analytical proof of saturability
of the optimized lower bound in the N-body harmonic oscillator case for the particular mass
configurations (N × m), ((N − 1) × m,M) and (n × m, n′ × M), with both n and n′ greater
than 1, but for arbitrary N.
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Appendix A

Let us adopt here the same notation as in subsection 3.2, i.e.,

c3 := x12,3, c4 := x12,4, d2 := x13,2, d4 := x13,4, e2 := x14,2, e3 := x14,3,
(A.1)

f1 := x23,1, f4 := x23,4, g1 := x24,1, g3 := x24,3, h1 := x34,1, h2 := x34,2,

and apply step by step the procedure described in section 3 in order to retrieve the universal
dynamical constraints in the four-body case (35).

First step. The 6 × 6 matrix D̃ is given by

D̃ = 1

4



4 (d2 − 1)2 (e2 − 1)2 (f1 − 1)2 (g1 − 1)2 (h1 − h2)
2

(c3 − 1)2 4 (e3 − 1)2 (f1 + 1)2 (g1 − g3)
2 (h1 − 1)2

(c4 − 1)2 (d4 − 1)2 4 (f1 − f4)
2 (g1 + 1)2 (h1 + 1)2

(c3 + 1)2 (d2 + 1)2 (e2 − e3)
2 4 (g3 − 1)2 (h2 − 1)2

(c4 + 1)2 (d2 − d4)
2 (e2 + 1)2 (f4 − 1)2 4 (h2 + 1)2

(c3 − c4)
2 (d4 + 1)2 (e3 + 1)2 (f4 + 1)2 (g3 + 1)2 4


.

(A.2)
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Each column of the 6 × 6 matrix D̃ gives rise to two columns of the matrix M̃. For instance,
the derivative of the first column of the matrix D̃ with respect to c3 gives rise to the first column
of the matrix M̃, the derivative of the first column of the matrix D̃ with respect to c4 gives rise
to the second column of the matrix M̃, the derivative of the second column of the matrix D̃
with respect to d2 gives rise to the third column of the matrix M̃, and so on. The 6 × 12 matrix
M̃ obtained in this way is then given by

M̃ = 1

2

×


0 0 d2 − 1 0 e2 − 1 0 f1 − 1 0 g1 − 1 0 h1 − h2 h2 − h1

c3 − 1 0 0 0 0 e3 − 1 f1 + 1 0 g1 − g3 g3 − g1 h1 − 1 0

0 c4 − 1 0 d4 − 1 0 0 f1 − f4 f4 − f1 g1 + 1 0 h1 + 1 0

c3 + 1 0 d2 + 1 0 e2 − e3 e3 − e2 0 0 0 g3 − 1 0 h2 − 1

0 c4 + 1 d2 − d4 d4 − d2 e2 + 1 0 0 f4 − 1 0 0 0 h2 + 1

c3 − c4 c4 − c3 0 d4 + 1 0 e3 + 1 0 f4 + 1 0 g3 + 1 0 0

 .

(A.3)

Second step. Before going further, let us note that since two matrices differing by an overall
multiplicative factor have the same rank, we find it more convenient to work with the matrix
2M̃ than with the matrix M̃ itself. We find it also convenient to refer to the two columns of
the matrix 2M̃ containing c3 and c4 as block C, to the two columns containing d2 and d4 as
block D and so on. Consider the first three blocks of the matrix 2M̃, namely the blocks C,D

and E. Six parameters are involved. Choose five among them, for instance c3, c4, d2, d4 and
e2, as independent parameters.

Third step. Now take the C,D and E blocks. You obtain in this way the following 6 × 6
matrix: 

0 0 d2 − 1 0 e2 − 1 0
c3 − 1 0 0 0 0 e3 − 1

0 c4 − 1 0 d4 − 1 0 0
c3 + 1 0 d2 + 1 0 e2 − e3 e3 − e2

0 c4 + 1 d2 − d4 d4 − d2 e2 + 1 0
c3 − c4 c4 − c3 0 d4 + 1 0 e3 + 1


. (A.4)

Calculate the determinant of this matrix, which we will refer to as CDE and put it in a
factorized form. The result is

CDE = −(c4d2e3 − d2e3 − c4d2 + 2c3d2 − d2 − 4 − c3 − d4 − c3d4 − e3 + 2d4e3 − e2

− c3e2 + c3d4e2 − d4e2 − c4 − c4e3 + 2c4e2)(d2 − d2e3 − c4d2 + c4d2e3 − c3

− d4 + c3d4 + e3 − e2 + c3e2 + d4e2 − c3d4e2 − c4e3 + c4). (A.5)

Equate CDE to zero. This results in either

c4d2e3 − d2e3 − c4d2 + 2c3d2 − d2 − 4 − c3 − d4 − c3d4 − e3

+ 2d4e3 − e2 − c3e2 + c3d4e2 − d4e2 − c4 − c4e3 + 2c4e2 = 0, (A.6)

or

d2 − d2e3 − c4d2 + c4d2e3 − c3 − d4 + c3d4 + e3 − e2 + c3e2 + d4e2

− c3d4e2 − c4e3 + c4 = 0. (A.7)

On the one hand, the first solution (A.6) clearly does not conform with the equal mass case
since, due to the presence of 4, it is not homogeneous in the parameters and must be rejected.
On the other hand, one can solve (A.7) for e3 and gets the first universal dynamical constraint

e3 = c4d2 − c4 − d2 − d4e2 + d4 − c3d4 + e2 + c3 + c3d4e2 − c3e2

(1 − c4)(1 − d2)
. (A.8)
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To determine the second and third constraints, construct two 6 × 6 matrices by taking the
blocks C,E, F for one of them and the blocks D,E,F for the other. Calculate their respective
determinants CEF and DEF . In both cases the determinant factorizes as the product of two
terms, one of which cannot be put to zero since it does not conform with the equal mass
case. This is a general feature which reproduces itself in the following. Thus CEF = 0 and
DEF = 0 give, respectively,

e3f1 − e3 + c4e3 − c4e3f1 − f1 − c3f1 + e2 − e2c4 + c4e2f1 + c3e2f1 + f4

+ c3f4 − c3e2f4 − e2f4 = 0. (A.9)
−e2f1 − e2 + d4e2f1 + d4e2 − f4 + f1 − d2f4 + d2f1 + e3 + e3f4 + d2e3f4

− d2e3f1 − d4e3f1 − d4e3 = 0. (A.10)

Taking into account the expression of e3, (A.8), (A.9) and (A.10) can be put, respectively, in
the form

{((e2 − 1)(−c3 + c3d4 + f1c4d2 − c4d2 + c4 − f1c3d4 − d4 − f1 + f4 − c4f1

+ c3f4 − c3f4d2 + c3f1d2 − d2f4 + d4f1 + d2))/(d2 − 1)} = 0. (A.11)
{((d4 − 1)(e2 − 1)(d4 − c3d4 − f1c3d4 + d4f1 + c3 − c4 − d2

− c4f1 + c4d2 + c3f4d2 + f1c4d2 − c3f1d2 − f4

− d2f4 + c3f4 + f1))/((d2 − 1)(c4 − 1))} = 0. (A.12)

In (A.11) e2 − 1 cannot be put to zero since e2 has been taken as an independent parameter. It
follows that the second factor in the numerator on the left-hand side of (A.11) is necessarily
zero, i.e.,

−c3 + c3d4 + f1c4d2 − c4d2 + c4 − f1c3d4 − d4 − f1 + f4 − c4f1

+ c3f4 − c3f4d2 + c3f1d2 − d2f4 + d4f1 + d2 = 0. (A.13)

In the same manner neither d4 − 1 nor e2 − 1 in (A.12) can be put to zero since d4 and e2 have
been taken as independent parameters. So the third factor in the numerator on the left-hand
side of (A.12) necessarily vanishes, i.e.,

d4 − c3d4 − f1c3d4 + d4f1 + c3 − c4 − d2 − c4f1 + c4d2

+ c3f4d2 + f1c4d2 − c3f1d2 − f4 − d2f4 + c3f4 + f1 = 0. (A.14)

One can solve (A.13) for f4 and gets

f4 = c3d4 − c3 + f1c4d2 − c4d2 + c4 − f1c3d4 − d4 − f1 − c4f1 + c3f1d2 + d4f1 + d2

−1 − c3 + c3d2 + d2
.

(A.15)

Substituting for f4 in (A.14) its expression (A.15), one gets

2
(−f1 + c3f1d2 − c3 + d2) (−c3d4 + c3 − d2 + c4d2 + d4 − c4)

(d2 − 1) (c3 + 1)
= 0. (A.16)

In (A.16) the factor −c3d4 + c3 − d2 + c4d2 + d4 − c4 cannot be put to zero since it involves
only independent parameters. Hence the first factor in the numerator on the left-hand side of
(A.16) necessarily vanishes, i.e.,

−f1 + c3f1d2 − c3 + d2 = 0. (A.17)

Solving (A.17) for f1, one gets a second universal dynamical constraint

f1 = c3 − d2

−1 + c3d2
. (A.18)
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Substituting (A.18) for f1 in (A.15), one obtains a third universal dynamical constraint, namely,

f4 = c3d4 − c4d2 + c4 − d4

−1 + c3d2
. (A.19)

To get the fourth and fifth constraints, we need two more 6 × 6 matrices. Construct one
of them by taking the blocks C,D,G and the other by taking the blocks D,E,G. Putting
CDG = 0 and DEG = 0, and rejecting in each case the solution which does not satisfy the
correct limits, one obtains respectively

c4d2g3 − c4g3 + d2g3 − g3 − d2 + c3d2 + d4 − c3d4 − c3d2g1

− c4d2g1 + c4g1 + g1 + c3d4g1 − d4g1 = 0, (A.20)

and

d4e2g3 + d4g3 − e2g3 − g3 − d2 + g1 − d2g1 + d4 + d2e3

+ d2e3g1 − d4e3 − d4e3g1 + e2g1 − d4e2g1 = 0. (A.21)

Equation (A.20) can be solved for g3,

g3 = d4g1 − c3d2 − d4 + c3d4 + d2 + c4d2g1 − c4g1 − g1 + c3d2g1 − c3d4g1

−c4 + d2 − 1 + c4d2
. (A.22)

Replacing e3 and g3 by their expressions, (A.8) and (A.22) respectively, (A.21) can be put in
the form

2
(d4 − 1) (d4 − d2) (c3 − 1) (−g1 − c4 + e2 + c4e2g1)

(d2 − 1)(c4 − 1) (1 + c4)
= 0. (A.23)

Because we have taken c3, d2 and d4 as independent parameters, none of the three factors
d4 − 1, d4 − d2, c3 − 1 can be put equal to zero. It follows that in order to satisfy (A.23), one
must have

−g1 − c4 + e2 + c4e2g1 = 0. (A.24)

Solving (A.24) for g1, one gets a fourth constraint

g1 = −e2 + c4

−1 + c4e2
. (A.25)

Now substituting (A.25) for g1 in (A.22), one gets a fifth constraint

g3 = c4d2 − c4 − d4e2 − e2c3d2 + c3d2 + c3d4e2 + d4 − c3d4 − d2 + e2

(d2 − 1) (−1 + c4e2)
. (A.26)

It remains to obtain the two last constraints, namely the sixth and seventh constraints.
To this end consider two other matrices. Construct one of them by taking the C,D and H
blocks and the other by taking C,G and H blocks. Putting their determinants equal to zero
and retaining in both cases the solution which gives the correct limit, one obtains, respectively,

c3d4h2 + c3h2 − h2 − d4h2 + h1 + c4 − c4h1 + d4h1 − c3

− c3d4h1 + c4d2h1 − c4d2 + c3d2 − c3d2h1 = 0 (A.27)

and

−g3h1 − h1 − c4g3h1 − c4h1 + h2 − c4 + c4g1 + c4g1h2

+ c3h2 + c3 − g1c3h2 − g1c3 + g3h2 + g3c4h2 = 0. (A.28)

Solving (A.27) for h1, one gets

h1 = c3d4h2 + c3h2 − h2 − d4h2 − c3 + c4 − c4d2 + c3d2

c4 + c3d4 − c4d2 − d4 − 1 + c3d2
. (A.29)
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Making use of the expressions for g1 (A.25) g3 (A.26) and h1 (A.29), (A.28) can be put in the
form

2{((1 + c4)(c4 − c3)(c4d2h2 + c4e2 − d2c4e2 − c4h2 − c3d2 + e2c3d2

− c3d4h2 + d2 + h2c3d4e2 + d4h2 − h2d4e2 − d2h2 − e2 + h2))/

((−c4 − c3d4 + c4d2 + d4 + 1 − c3d2)(−1 + c4e2))} = 0. (A.30)

None of the two factors 1 + c4 and c4 − c3 involved in the numerator on the left-hand side of
(A.30) can be put to zero, since both c3 and c4 have been chosen to be independent parameters.
This means that in order to satisfy (A.30), one must have

c4d2h2 + c4e2 − d2c4e2 − c4h2 − c3d2 + e2c3d2 − c3d4h2 + d2

+ h2c3d4e2 + d4h2 − h2d4e2 − d2h2 − e2 + h2 = 0. (A.31)

One can solve (A.31) for h2 to obtain the sixth constraint

h2 = c3d2 − c4e2 + d2c4e2 − d2 + e2 − e2c3d2

−c3d4 − c4 + c4d2 + d4 − d4e2 − d2 + c3d4e2 + 1
. (A.32)

Substituting (A.32) for h2 in (A.29), one gets the seventh and last universal dynamical
constraint

h1 = c4d2 − c4 − d2 − c3e2 + c3 + e2

−c3d4 − c4 + c4d2 + d4 − d4e2 − d2 + c3d4e2 + 1
. (A.33)

Appendix B

For N � 6 the universal dynamical constraints can be computed only for special mass
configurations. Let us illustrate in the six-body case how our method can be adapted to
work out the universal dynamical constraints for particular mass configurations. We can
treat the cases where up to three different masses are involved, i.e., the configurations
(m1,m2, 4m3) , (m1, 2m2, 3m3), (2m1, 2m2, 2m3), if we restrict ourselves to two-body
interactions depending only on the constituent masses. Let us consider in turn these three
mass configurations and derive the corresponding universal dynamical constraints.

B.1. (m1,m2, 4m3)

In this case the kinetic energy decomposition (2) reduces to

1

2m1
p2

1 +
1

2m2
p2

2 +
1

2m3
p2

3 +
1

2m3
p2

4 +
1

2m3
p2

5 +
1

2m3
p2

6

= (b1p1 + b2p2 + b3p3 + b3p4 + b3p5 + b3p6)(p1 + p2 + p3 + p4 + p5 + p6)

+
a12

4
(p1 − p2 + cp3 + cp4 + cp5 + cp6)

2

+
a13

4
(p1 − p3 + dp2 + ep4 + ep5 + ep6)

2

+
a13

4
(p1 − p4 + dp2 + ep3 + ep5 + ep6)

2

+
a13

4
(p1 − p5 + dp2 + ep3 + ep4 + ep6)

2

+
a13

4
(p1 − p6 + dp2 + ep3 + ep4 + ep5)

2

+
a23

4
(p2 − p3 + f p1 + gp4 + gp5 + gp6)

2
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+
a23

4
(p2 − p4 + f p1 + gp3 + gp5 + gp6)

2

+
a23

4
(p2 − p5 + f p1 + gp3 + gp4 + gp6)

2

+
a23

4
(p2 − p6 + f p1 + gp3 + gp4 + gp5)

2

+
a34

4
(p3 − p4)

2 +
a34

4
(p3 − p5)

2 +
a34

4
(p3 − p6)

2

+
a34

4
(p4 − p5)

2 +
a34

4
(p4 − p6)

2 +
a34

4
(p5 − p6)

2. (B.1)

Identifying both sides of (B.1), and eliminating b1, b2 and b3, one obtains the following set of
equations for a12, a13, a23 and a34 with c, d, e, f, h and g as parameters,

4 4 (d − 1)2 4 (f − 1)2 0
(c − 1)2 3e2 − 6e + 7 2f − 6fg + 4f 2 + 3g2 + 1 3
(c + 1)2 2d − 6de + 4d2 + 3e2 + 1 3g2 − 6g + 7 3

0 (e + 1)2 (g + 1)2 4



×


a12

a13

a23

a34

 =


2

m1
+ 2

m2

2
m1

+ 2
m3

2
m2

+ 2
m3

2
m3

 . (B.2)

It is easy to see that the values of the parameters c, d, e, f, g corresponding to the optimized
lower bound are such that the matrix

0 8 (d − 1) 0 8 (f − 1) 0
2 (c − 1) 0 6 (e − 1) 2 (1 + 4f − 3g) 6 (g − f )

2 (c + 1) 2 (1 + 4d − 3e) 6 (e − d) 0 6 (g − 1)

0 0 2 (e + 1) 0 2 (g + 1)

 , (B.3)

must be of rank 3 at most, i.e., any 4 × 4 matrix extracted from the 4 × 5 matrix (B.3) must
be of determinant zero. This results in two relations

f = c − d

cd − 1
, g = c − e − cd + ce

cd − 1
. (B.4)

B.2. (m1, 2m2, 3m3)

In this particular case, the kinetic energy decomposition (2) simplifies to

1

2m1
p2

1 +
1

2m2
p2

2 +
1

2m2
p2

3 +
1

2m3
p2

4 +
1

2m3
p2

5 +
1

2m3
p2

6

= (b1p1 + b2p2 + b2p3 + b4p4 + b4p5 + b4p6)(p1 + p2 + p3 + p4 + p5 + p6)

+
a12

4
(p1 − p2 + cp3 + dp4 + dp5 + dp6)

2

+
a12

4
(p1 − p3 + cp2 + dp4 + dp5 + dp6)

2

+
a14

4
(p1 − p4 + ep2 + ep3 + f p5 + f p6)

2

+
a14

4
(p1 − p5 + ep2 + ep3 + f p4 + f p6)

2

+
a14

4
(p1 − p6 + ep2 + ep3 + f p4 + f p5)

2
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+
a23

4
(p2 − p3)

2

+
a24

4
(p2 − p4 + gp1 + hp3 + ip5 + ip6)

2

+
a24

4
(p2 − p5 + gp1 + hp3 + ip4 + ip6)

2

+
a24

4
(p2 − p6 + gp1 + hp3 + ip4 + ip5)

2

+
a24

4
(p3 − p4 + gp1 + hp2 + ip5 + ip6)

2

+
a24

4
(p3 − p5 + gp1 + hp2 + ip4 + ip6)

2

+
a24

4
(p3 − p6 + gp1 + hp2 + ip4 + ip5)

2

+
a45

4
(p4 − p5)

2 +
a45

4
(p4 − p6)

2 +
a45

4
(p5 − p6)

2. (B.5)

Identifying both sides of (B.5), and eliminating b1, b2 and b4, one gets the following set of
five linear equations for a12, a14, a23, a24 and a45 with c, d, e, f, g, h and i as parameters

c2−2c+5
2

3(e−1)2

2
1
2

3(2g2−2gh−2g+h2+1)

2 0
(d − 1)2 (f 2 − 2f + 3) 0 (2g − 4gi + 3g2 + 2i2 + 1) 1

(2d−2cd+c2+2d2+1)

2
2e−4ef +3e2+2f 2+1

2
1
2

(2h−4i−4hi+3h2+4i2+7)

2 1
c+1

2 0 1 3(h−1)2

2 0

0 (f +1)2

2 0 (i + 1)2 3
2



×


a12

a14

a23

a24

a45

 =


2

m1
+ 2

m2
2

m1
+ 2

m3
2

m2
+ 2

m3
2

m2
2

m3

 . (B.6)

Here, it is easy to see that the values of the parameters c, d, e, f, g, h and i corresponding to
the optimized lower bound are such that the 5 × 7 matrix

(c − 1) 0 3(e − 1) 0 3(2g − h − 1) 3(h − g) 0
0 2(d − 1) 0 2(f − 1) 2(3g − 2i + 1) 0 4(i − g)

(c − d) (2d − c + 1) (1 − 2f + 3e) 2(f − e) 0 (1 − 2i + 3h) 2(2i − h − 1)

(c + 1) 0 0 0 0 3(h − 1) 0
0 0 0 (f + 1) 0 0 2(i + 1)

 ,

(B.7)

is of rank 4 at most. This means that every 5 × 5 matrix extracted from the previous matrix
by selecting five of its columns must be of determinant zero. This results in three relations
between the values of the parameters c, d, e, f, g, h and i corresponding to the optimized
lower bound, namely,

g = d − e

de − 1
, h = c + de − e − ce

de − 1
, i = d + df − f − de

de − 1
. (B.8)
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B.3. (2m1, 2m2, 2m3)

Here, the kinetic energy decomposition (2) reduces to

1

2m1
p2

1 +
1

2m1
p2

2 +
1

2m2
p2

3 +
1

2m2
p2

4 +
1

2m3
p2

5 +
1

2m3
p2

6

= (b1p1 + b1p2 + b3p3 + b3p4 + b5p5 + b5p6)(p1 + p2 + p3 + p4 + p5 + p6)

+
a12

4
(p1 − p2)

2

+
a13

4
(p1 − p3 + cp2 + dp4 + ep5 + ep6)

2

+
a13

4
(p1 − p4 + cp2 + dp3 + ep5 + ep6)

2

+
a15

4
(p1 − p5 + f p2 + gp3 + gp4 + hp6)

2

+
a15

4
(p1 − p6 + f p2 + gp3 + gp4 + hp5)

2

+
a13

4
(p2 − p3 + cp1 + dp4 + ep5 + ep6)

2

+
a13

4
(p2 − p4 + cp1 + dp3 + ep5 + ep6)

2

+
a15

4
(p2 − p5 + f p1 + gp3 + gp4 + hp6)

2

+
a15

4
(p2 − p6 + f p1 + gp3 + gp4 + hp5)

2

+
a34

4
(p3 − p4)

2

+
a35

4
(p3 − p5 + ip1 + ip2 + jp4 + kp6)

2

+
a35

4
(p3 − p6 + ip1 + ip2 + jp4 + kp5)

2

+
a35

4
(p4 − p5 + ip1 + ip2 + jp3 + kp6)

2

+
a35

4
(p4 − p6 + ip1 + ip2 + jp3 + kp5)

2

+
a56

4
(p5 − p6)

2. (B.9)

The identification of the left-hand side of (B.9) with its right-hand side leads us after elimination
of b1, b3 and b5 to a linear system of six equations for the six a, namely a12, a13, a15, a34, a35

and a56, with c, d, e, f, g, h, i, j and k as parameters

2



1 (c − 1)2 (f − 1)2 0 0 0
1
2 3 + c2 + c − cd − d + d2 1 + 2g2 − 2g − 2fg + f 2 1

2 1 + 2i2 − 2ij + j 2 − 2i 0
1
2 1 + c2 − 2ce − 2e + 2e2 3 + f 2 − h + f − f h + h2 0 1 + 2i2 + k2 + 2i − 2ik 1

2

0 (d + 1)2 0 1 (j − 1)2 0

0 1 + d2 + 2e2 + 2e − 2de 2g − 2gh + 2g2 + 1 + h2 1
2 3 + j 2 + k2 + j − k − jk 1

2

0 0 (h + 1)2 0 (k + 1)2 1


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×



a12

a13

a15

a34

a35

a56


=



2
m1

2
m1

+ 2
m2

2
m1

+ 2
m3

2
m2

2
m2

+ 2
m3

2
m3


. (B.10)

It is easy to show that the values of the parameters c, d, e, f, g, h, i, j and k, corresponding to
the optimized lower bound are such that the 6 × 9 matrix

2(c − 1) 0 0 2(f − 1) 0
2c + 1 − d 2d − c − 1 0 2(f − g) 2(2g − 1 − f )

2(c − e) 0 2(2e − c − 1) 2f + 1 − h 0
0 2(d + 1) 0 0 0
0 2(d − e) 2(2e + 1 − d) 0 2(1 − h + 2g)

0 0 0 0 0

0 0 0 0
0 2(2i − j − 1) 2(j − i) 0

2h − f − 1 2(2i + 1 − k) 0 2(k − i)

0 0 2(j − 1) 0
2(h − g) 0 2j + 1 − k 2k − 1 − j

2(h + 1) 0 0 2(k + 1)


(B.11)

is of rank 5 at most, i.e., any 6 × 6 matrix extracted from the previous matrix by selecting six
of its columns must be of determinant zero. This results in four relations among the values
of the nine parameters c, d, e, f, g, h, i, j and k, when the optimized lower bound is reached,
namely,

f = c + i + ei − ci

1 + ei
, g = e + i

1 + ei
, j = e + di + i − d

1 + e
, k = h − e + ei + ehi

1 + e
.

(B.12)

The same pattern occurs for N-body systems with N � 7. The calculations leading to the
universal dynamical constraints are intractable in the most general case, but can be worked
out when the system exhibits a sufficient degree of symmetry, reducing thereby the number
of independent parameters xij,k and the number of independent aij . It is easy to see that
the number of universal dynamical constraints is the number of independent parameters xij,k

minus the number of independent aij plus 1. Indeed, aij are determined by a matrix equation
similar to (21), where the matrix playing the role of D̃ is a square matrix, whose number of
lines is the number of independent aij . Each of the parameters xij,k appears in one and only
one column of the square matrix. Now, consider one of the independent parameters xij,k ,
select the single column which contains it, and take the derivative of this column with respect
to this same parameter. This results in a new non-vanishing column. Repeating the process for
each of the independent parameters results in a number of columns which is the same as the
number of independent xij,k . Putting together these columns, one can construct a p×q matrix,
where p, the number of lines, is the number of independent aij , and q, the number of columns,
is the number of independent xij,k . The universal dynamical constraints are then obtained by
requiring the matrix obtained in this way to be of rank p − 1 at most, i.e., any p × p matrix
extracted from the p × q matrix by selecting p of its columns must be of determinant zero.
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This results in q − p + 1 conditions among the parameters, i.e., q − p + 1 universal dynamical
constraints. This general rule is verified in particular for the three particular configurations
of the six-body system considered above. Obviously, the above rule supposes the number of
independent parameters xij,k greater than or equal to the number of independent aij . Now,
what happens when the number of independent parameters xij,k is lower than the number of
independent aij ? Here, there are no further universal dynamical constraints at all, other than
those deduced from symmetry arguments. For N-body systems, with arbitrary N, this situation
occurs only for three particular mass configurations, considered in detail in section 4.

References

[1] Basdevant J-L, Martin A, Richard J-M and Wu T T 1993 Nucl. Phys. B 393 111
[2] Benslama A, Metatla A, Bachkhaznadji A, Zouzou S R, Krikeb A, Basdevant J-L, Richard J-M and Wu T T

1998 Few-Body Syst. 24 39
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